
 Paper 1308-2014

1

Automating the Creation of Complex PowerPoints

Julie VanBuskirk, MPH Baylor Health Care System

Abstract:

The creation of production reports for our organization has historically been a labor-intensive

process. Each month our team produced around 650 SAS® graphs and 30 tables which were then copied

and pasted into 16 custom PowerPoint presentations, each between 20 and 30 pages. To reduce the

number of manual steps, we converted to using stored processes and the SAS® Add-In for Microsoft

Office to run SAS® stored processes. SAS stored processes generate the graphs and tables while SAS

Add-In for Microsoft Office refreshes the document with updated graphs already sized and positioned

on the slides just as we need them. With this new process we are realizing the dream of reducing the

amount of time spent on a single monthly production process.

This paper will discuss the steps to creating a complex PowerPoint presentation that is simply

refreshed rather than created new each month. I will discuss converting the original code to stored

processes using SAS® Enterprise Guide®, options and style statements that are required to continue to

use a custom style sheet, and how to create the PowerPoint presentation with an assortment of output

types including horizontal bar charts, control charts, and tables. I will also discuss some of the challenges

and solutions specific to stored process and SAS Add-In for Microsoft Office that we encountered during

this conversion process.

The Basic Stored Process

The first step to creating a refreshable PowerPoint is to start with working SAS code. To work through

this process, I have created a simple piece of code that modifies a SAS help dataset for use in graphics

code that creates a multi series run chart. This code has been provided in the appendix to allow you to

work through the example. Start by placing that code in a program within Enterprise Guide.

Select File -> New -> Stored process to create the stored process. This can also

be done from the actual program in SAS Enterprise Guide under the create

button. However, creating a stored process directly from code creates a link

between the program and stored process. Once those pieces are linked each

time you make a change you will be prompted to select the server or local code

and asked if changes should be copied from

one to the other.

Now you will see the ‘create stored process’ interface. The first page

allows you to define the name and location of your stored process as

well as any description, keywords, or responsibilities that need to be

associated with that code. I will rename my stored process to

Test_for_SCSUG and leave the location as /My Folder. Then click Next.

 Paper 1308-2014

2

The second page opens a blank space for the SAS code to be placed.

There are several choices to get your code into the stored process

from simple copy/paste to using the stored process buttons. We will

click the button ‘replace with code from’ and select ‘this project’.

This will bring up a selection box populated with all of the items that

you have open within that SAS Enterprise Guide project. Select the

program containing the test code that you copied in and click Open.

This automatically pulls all of that code into the stored process code

space.

The next step is identifying the method of stored process storage

and where to execute the stored process. The choice of server type

is depends on a number of factors. The stored process server uses a

shared server ID to run the stored processes and will allow for

multiple users. This allows for faster run times, however since this

ID is shared by all users security could be an issue. On the other

hand, the workspace server uses the individual client identity which

restricts access based on individual permissions. Choosing this

option will reduce any potential security risks, but will increase the

startup time since it opens a new server process. For this exercise,

we will choose the stored process server only. The final selection is a location and means of execution

for the stored process. Since this is a test process, I will select allow execution on selected application

server only and store source code in metadata. Select store source code on application server and

define a repository for that code if you would like to create a backup file containing the stored process

code. Finally, leave both stream and package options checked and SAS will determine the best method

to return results. Stream allows SAS to return the results as they are generated, while package tells SAS

to wait until all results are complete before returning them.

For this example we will skip pages 4 and 5 of the stored process

wizard, there is no need for prompting or input data sources with

this code. The final page provides a summary of the stored process

you created; there is a check box to show the full SAS code for

review. Click on the box to run stored process when finished and

the finish to complete the process.

 Paper 1308-2014

3

Once the stored process runs the following graph is created (your

graph may appear differently if you have SAS Enterprise Guide set

up with a different default style). Now that I have working output I

can work on updating the style to match our corporate image.

Using a custom style with Stored process

 The default style that stored process creates is functional, but not pretty. At our organization,

we have developed a style template to create a unified style for all reports. To use this custom template

with graphics code in a stored process several statements must be added.

Let’s start with the %STPBEGIN and %STPEND macros. These are automatically added to your stored

process by Enterprise Guide and sandwich your code unless you specifically call them within the code.

The %STPBEGIN macro begins opens ODS for reporting and %STPEND closes it. These macros use a

standard set of reserved macro variables to define the stored process options. To update options

associated with the stored process, these reserved macro values have to be overwritten before ODS is

initiated. Begin by wrapping the entire original code with the %STPBEGIN and %STPEND macro calls,

next include the %GLOBAL statement at the top of the stored process with the reserved macro variables

that need to be changed. Then a %LET statement must be used to reset the style name to the style, and

a libname and ODS PATH statement must be used to provide direction to the location of the style sheet.

/* --- Reset reserved macro variables --- */

%Global _odsstyle ;

/*Reset the macro var to my style sheet*/

%Let _odsstyle = BestCareFY12;

/*Define where to find the style template*/

libname test "\\my template storage location";

ods path(prepend) test.template(read);

%STPBEGIN;

 Original code from the stored process.

%STPEND;

Most stored process examples use the _stylesheet= option and a CSS style in order to

create output with a customized style. This will work for some output, however for the

graph elements to be passed into the stored process it must be from a SAS® style

template. When creating a CSS sheet the graph selectors are not passed from template

into CSS.

 Paper 1308-2014

4

Now that the customized style is replacing the default the

output is created based on my custom style definitions.

This additional step creates a product that is more in line

with our corporate style and will look great in our

PowerPoint reports.

Creating the Customized PowerPoint

Before creating your PowerPoint, save the stored process is in its final home within the

SAS folder structure. Currently there is no way to update the path from the SAS Add-In

for Microsoft Office to change the location of the stored process. Therefore if you create

a PowerPoint and then decide to change the stored process location you will have to

recreate the PowerPoint.

Now that the stored process has been created

to produce the desired output, we can begin creating

a customized PowerPoint. To open new content into

the PowerPoint, open the SAS tab on ribbon and click

the reports button. This opens a navigation window

which allows you to search through the SAS folders to

the stored process of interest. Select the stored

process and it opens into first open layout space in

the PowerPoint. If there is no space on the current

slide, the SAS Add-In for Microsoft Office will

automatically open the output to a new slide.

To place multiple pieces of output on a single slide, you can either select a slide layout that

meets your needs through the home tab on the ribbon or you can copy and paste output onto the slide

you want. If you copy and paste, make sure you paste using the ‘keep destination theme’ option. This

will preserve the link between the piece of output and the SAS toolbar and ensure the output remains

refreshable. Once the output has been positioned correctly it will keep that positioning for any future

refreshes. Even if the original output had to be resized or pieces of output had to be deleted the SAS

Add-In for Microsoft Office will respect those changes during later refreshes.

 Paper 1308-2014

5

Updating the content for monthly production is now an easy process with the SAS Add-In for

Microsoft Office. There are several methods that you can use to refresh content. To update a single

piece of output, click on the piece of interest, then

select either refresh or modify on the SAS tab of the

ribbon. Refresh will update the output as is with no

prompt changes, modify will bring up the prompt

screen and allow you to change the stored process

prompts before running. Updating all content at once

is also simple, select manage content and

select all stored processes within the

presentation and hit refresh.

Adding customized tables to PowerPoint

The biggest challenge that we have faced in creating

customized reports in PowerPoint has been finding a method

to automate printing custom tables in our reports. All of our

reporting tables look similar to the one on the right, good

performance is not highlighted at all, moderate performance

has a light background change, and poor performance has both

a background color and cell borders to focus attention. Once

the table code was converted into stored process we could

begin testing it in PowerPoint. Table 2 is the result the first time

the table was created using the SAS Add-In for Microsoft Office,

this image is created using the default PowerPoint style rather

than the SAS style. To convert this back to the custom style, first

select the table, then select properties from the SAS toolbar, go

to the appearance tab and select ‘always apply the SAS style to

the results’ and then select the custom style from the list.

In order to see the custom style in the list of available SAS styles it must be added as an

external style in Enterprise Guide. To do this, first run the style template and save it to

the desired location. Then in Enterprise Guide select Tools-> Style Manager->Add… Then

enter the style name and location as a new external style and hit ok. Now the custom

style will be available both in SAS Enterprise Guide and the SAS Add-In for Microsoft

Office.

Table 2: PowerPoint default

Update a single piece of output

using refresh or modify.

Table 1: Original Design

Update all output at once

using manage content.

 Paper 1308-2014

6

Now that the style properties are updated,

refreshing will update the image to incorporate the

changes. Table 3 is the updated image that uses the

custom defined style options. However, there is still

something missing from this image. Not only are the big red boxes

gone, but all of the cell borders are completely gone. For our

reports, this is a big problem, and currently there is no way around it in PowerPoint. The cell borders

were turned off by default in the product, and tech support is currently working on a fix for this

issue. (YAY!!!)

 To circumvent this issue we tried

several options, the first was to use

in-line styles to add a red dot to those

low performing facilities. Table 4 is

the result of adding a red dot when

the table is output to html, however

when the same table is run using the

listing destination it appears like Table 4a.

Unfortunately for us, the default output destination for PowerPoint is SAS Report XML or .SRX which

is very similar to listing output. So the easy method of updating traffic lighting failed, and we are

very committed to staying far away from traditional

traffic lighting.

So since this was a PowerPoint issue, the first

thought was to open the output into Excel and then

insert it as an object into PowerPoint. Table 5

represents the product from opening the output with the correct

style into Excel. It is definitely the closest to the original,

however the big red box is not complete for any of the cells.

The output destination for this stored process has been

changed to HTML, but by default all output is brought into

the SAS Add-In for Microsoft Office using the SAS report

destination. To update this to HTML instead, on the SAS

toolbar go to tools -> options -> results-> and update the

format to HTML. This change requires a restart of Excel to

take effect.

Table 3: Closer…but no cell borders.

Table 4: HTML output. Table 4a: .SRX output

Table 5: Original Excel output.

 Paper 1308-2014

7

Once that was done Table 5a was returned as output from the stored process. This output was

the closest that we could get to the original. The final problem is the PROC REPORT border

overwriting the outer cell borders. Currently we have no fix for this since the outer border has been

turned off for PROC REPORT output. With no fix, this goes on the long term list and until the SAS fix

comes out we continue to manually insert tables into all reports.

Contact Information:

Follow the QR code to my blog to find more information about this topic, or

email me at Julie.frick@baylorhealth.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

References:

Watts, Perry. Derby, Nate. Stakana Analytics, Elkins Park, PA; Using SAS® GTL to Visualize Your

Data When There is Too Much of it to Visualize; SAS® Global Forum 2012 (Paper 262-2012).

SAS® Institute Inc. 2009. SAS® 9.2 Stored Processes: Developer’s Guide. Cary, NC: SAS® Institute

Inc.

SAS® Institute Inc. 2012. Creating Business Intelligence for your Organization 1: Essentials Course

Notes. Cary, NC: SAS® Institute Inc.

Cynthia L. Zender. SAS® Institute Inc., Cary, NC; ODS Options and SAS® Stored Processes; SAS®

Global Forum 2007. (Paper 021-2007)

Table 5a: Final Excel output

mailto:Julie.frick@baylorhealth.edu
http://support.sas.com/resources/papers/proceedings12/262-2012.pdfhttp:/support.sas.com/resources/papers/proceedings12/262-2012.pdf
http://www2.sas.com/proceedings/forum2007/021-2007.pdf

 Paper 1308-2014

8

Appendix 1: Template Code

/*Appendix 1: Template Code*/

libname b_style "\\bhcs.pvt\dfsusers\Home\SAS Paper\TemplateTesting";

ods path(prepend) b_style.bhcs_styles(update);

proc template;

 define style styles.Baylor_core;

 parent= styles.Journal;

 style GraphFonts /

 'GraphTitleFont'=("Arial",12pt,bold)

 'GraphTitle1Font'=("Arial",10pt)

 'GraphLabelFont'=("Arial",10pt)

 'GraphLabel2Font'=("Arial",10pt)

 'Graphfootnotefont' = ("Arial", 8pt, extra_light)

 'GraphValueFont'=("Arial",10pt)

 'GraphDataFont'=("Arial ",8pt)

 'GraphUnicodeFont'=("Arial",8pt)

 'GraphAnnoFont'=("Arial",10pt);

 style colors/

 'docbg' = azure

 ;

 style GraphColors /

 'gaxis' = blue /*control x,y axis color*/

 'gwalls' = cxc2deea

 'gdata2' = CX0073CF /* System Data*/

 'gdata4' = pink

;

 class GraphTitleText /

/*changes the size and color of the graph title*/

 font=GraphFonts('GraphTitleFont')

 color= Orange

 ;

 class GraphFootnoteText /

/*changes the size and color of the graph footnote*/

 font= GraphFonts('GraphFootnoteFont')

 color=purple

 textalign=left

 ;

 Paper 1308-2014

9

 class graphlabeltext / /*changes the font and size of the axis

labels*/

 font=GraphFonts('GraphLabelFont')

 color=red

 ;

 class graphvaluetext /

/*changes the color and font of data values on the axis*/

 font=GraphFonts('GraphValueFont')

 color= green /*changes the color of all axis values*/;

class graphbackground /

 backgroundcolor= colors ('docbg')

 color=colors('docbg')/*outside of graph area (behind x&y

 values)background color*/;

class GraphWalls /

 linethickness = 1px

 linestyle = 1

 frameborder = off

 contrastcolor = GraphColors('gaxis') /*controls x&y axis color*/

 backgroundcolor = GraphColors('gwalls') /*controls background

color of graph*/

 /*color = GraphColors('gfloor')*/ /*overwrites background color

if both are used*/

 ;

class GraphDataDefault / /*controls the marker appearance, must be

within the template (markerattrs)*/

 markersize = 9px

 markersymbol = "circlefilled" /*Line marker style*/

 linethickness = 2 /*controls line thickness*/

 linestyle = 4 /*controls pattern of line*/

 contrastcolor = GraphColors('gdata2') /*control marker&line

color*/;

 class GraphData1 /

 markersize = 9px

 markersymbol = "diamondfilled" /*Line marker style*/

 linethickness = 2 /*controls line thickness*/

 linestyle = 1 /*controls pattern of line*/

 contrastcolor = GraphColors('gdata4');

end;

run;

proc template;

 define statgraph b_style.baylor_RUNCHART ;

 dynamic title1 title2

 foot1 foot2 foot3

 _YAXIS _yaxis2

 xvalue yvalue

 x2value y2value

 y_label x_label;

 Paper 1308-2014

10

 begingraph /border=false;

 entrytitle title1 /textattrs= Graphtitletext(weight = bold);

 entrytitle title2 /textattrs= Graphtitletext(weight=normal);

 entryfootnote halign= right foot1

 halign=left foot2 / textattrs=graphfootnotetext;

 entryfootnote halign= left foot3 / textattrs=graphfootnotetext;

 layout overlay /

 yaxisopts = (label = _YAXIS

display=(ticks tickvalues label line)

labelattrs = graphlabeltext)

 xaxisopts= (display =(ticks tickvalues line))

 y2axisopts = (label = _yaxis2

display=(ticks tickvalues line label)

labelattrs = graphlabeltext);

 seriesplot x= x2value y= y2value /primary=true

connectorder=xvalues display=all

yaxis=y2

lineattrs= GraphDataDefault(pattern=shortdash)

markerattrs= GraphDataDefault ;

 seriesplot x= xvalue y=yvalue / primary=false

connectorder=xvalues display=all

yaxis=y

lineattrs= GraphData1

markerattrs=GraphData1;

 Paper 1308-2014

11

Appendix 2: Stored Process Code

/* --- Start of code for "Graph Code". --- */

%Global _odsstyle _odsoptions ;

*Process Body;

/*Find the style sheet*/

%Let _odsstyle = styles.baylor_core;

libname b_style

"\\bhdasas02\apps_data\SASResources\Styles\Output\Prod\StyleTemplates"

;

ods path(prepend) b_style.bhcs_styles(update);

/*CREATE DATA WITH A REP_PERIOD_DATE, 2 METRICS FOR REPORTING, AND

METRIC_CODE*/

Proc sql;

 create table scsug_test

 as select

 count as metric_value,

 day as rep_period_date,

 case

 when process = 'Process A' THEN metric_value

 else .

 end as Metric_1,

 case

 when process = 'Process B' THEN metric_value

 else .

 end as Metric_2,

 10 as ref1,

 5 as ref2

from SAShelp.failure;

quit;

proc sort data= scsug_test;

 by rep_period_date descending metric_1 metric_2;

 run;

Data scsug_test2;

 set scsug_test;

 by rep_period_Date descending metric_1 metric_2;

 if first.rep_period_date = 1 or last.rep_period_date = 1;

 run;

%stpbegin;

 Paper 1308-2014

12

proc sgrender data=scsug_test2 template= b_style.baylor_RUNCHART;

 dynamic

 title1 = "Student Data Test"

 title2 = "For SCSUG Conference"

 foot1 = "My Test Code"

 foot2 = "Graph template available in SGF proceedings"

 foot3 = "by JV 2012"

 _Yaxis = "Axis 1 Label"

 _yaxis2 = "Axis 2 Label"

 xvalue = 'REP_period_date' yvalue = 'metric_1'

 X2value = 'REP_period_date' y2value = 'metric_2';

 run;

 %stpend;

/* --- End of code for "Graph Code". --- */

